Catalog Course Description:

A continuation of concepts covered in CID 1210. More detailed drawing requirements will be covered as well as the need for more specialized drawings. The student will organize and draw a set of detailed drawings consisting of wall sections, large-scale details of doors, windows & stairs, isometric details, multiple plans, interior elevations, and details required for special construction.

Entry Level Standards:

Must have college level English and math skills.

Prerequisite:

CID 1210

Textbook(s) and Other Reference Materials Basic to the Course:

Required Text:
Architectural Drafting & Design, Jeffis/Madsen

References:
Architectural Graphic Standards
Southern Standard Building Code
Sweets On-line Catalogue
Certainteed Web site

Equipment:
3.5” or ZIP disks
Notebook
Architectural scale
Material for model (if required)

I. Week/Unit/Topic Basis:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microstation commands, Schematic plans; Material symbols</td>
</tr>
<tr>
<td>2</td>
<td>Microstation commands, Wall sections</td>
</tr>
<tr>
<td>3</td>
<td>Microstation commands, Wall sections</td>
</tr>
<tr>
<td>4</td>
<td>Project Architect, Floor plans</td>
</tr>
</tbody>
</table>
II. Course Objectives*

A. Interpret building code requirements. VI, VII
B. Represent graphically material representations for a building. VI, VIII
C. Know and understand standard practices as required by individual offices, regional practice and ANSI standards. VI, VIII
D. Understand plan, section, detail, and elevation view concepts as used to describe building construction. II, VI
E. Use a CAD program to generate required drawings & reports. IV, V, VI, VII, VIII, IX
F. Represent building materials and components graphically. VI, VIII
G. Use other computer applications to produce reports. VII

*Roman numerals after course objectives reference goals of the CID program.

III. Instructional Processes*

Students will:

1. Use the "graphic primitives" of MicroStation to generate common symbols used in the construction industry. Technological Literacy Outcome

2. Import graphic files, scale to standard industry requirements and use to generate standard construction details. Numerical Literacy Outcome, Problem Solving and Decision Making Outcome, Technological Literacy Outcome, Active Learning Strategy

3. Use standard industry reference materials in electronic format. Technological Literacy Outcome, Communication Outcome, Active Learning Strategy, Information Literacy
Outcome

4. Use CAD applications to generate plans and details. *Technological Literacy Outcome, Active Learning Strategy*

5. Generate three-dimensional model using architectural application software. Use model to verify construction processes. *Technical Literacy Outcome, Problem Solving and Decision Making Outcome, Active Learning Strategy*

6. Use three-dimensional model to generate 2D drawing for production drawings. *Problem Solving and Decision Making Outcome, Technological Literacy Outcome, Active Learning Strategies*

7. Use dimensioning tools to completely and properly dimension final drawings as well as use annotation tools to completely annotate final drawing. *Technological Literacy Outcome, Communication Outcome, Numerical Literacy Outcome*

8. Use word processor and spreadsheet to generate reports and memos and calculations. *Communication Outcome, Active Learning Strategy, Technological Literacy Outcome, Numerical Literacy Outcome*

9. Use CAD application to generate plots according to industry standards. *Technological Literacy Outcome, Communication Outcome, Numerical Literacy Outcome, Personal Development Outcome, Transitional Strategy*

*Strategies and outcomes listed after instructional processes reference Pellissippi State’s goals for strengthening general education knowledge and skills, connecting coursework to experiences beyond the classroom, and encouraging students to take active and responsible roles in the educational process.

**IV. Expectations for Student Performance*:*

Upon successful completion of this course, the student should be able to:

1. Understand modular coordination. C,D
2. Know material sizes and thickness. B,C,F
3. Know material symbology. F
4. Understand basic concepts of material combinations. C,F
5. Know basic concepts of drawing organization. C,D
6. Understand code requirements for stairs. A
7. Understand code requirements for restrooms. A
8. Draw typical wall sections. B,C,D,E,F
9. Draw stair section. B,C,D,E,F
10. Draw interior elevations. B,C,D,E,F
11. Draw large-scale details. B,C,D,E,F
12. Plot drawings at a given scale. C
13. Use computer to facilitate repetitive drawing. E
14. Use computer to annotate drawings following industry standards. C,E
15. Use computer to generate accurate drawings. C,E
16. Use computer to write proposals and reports. G

*Letters after performance expectations reference the course objectives listed above.

V. Evaluation:

A. Testing Procedures: 10% of grade

There will be quizzes at the discretion of the instructor (10%)

B. Laboratory Expectations: 70% or more of grade

This course is primarily a laboratory course. Lectures will be presented to explain various principles. While the majority of lab time will be dedicated to drawing it is expected the student will spend extra time outside of class to complete required drawings. Drawings will be the major portion (70% or more) of the student’s grade.

C. Field Work: 20% of grade

Students will be required to write reports and memos (10%)
A notebook will be required upon completion of the course (10%)

D. Other Evaluation Methods:

N/A

E. Grading Scale:

A 90-100
B+ 85-89
B 80-84
C+ 75-79
C 70-74
D 60-69
F 59 and below

VI. Policies:

A. Attendance Policy:

Pellissippi State Technical Community College expects students to attend all scheduled instructional activities. As a minimum, students in all courses must be present for at least 75 percent of their scheduled class and laboratory meetings in order to receive credit for the course. Individual departments/programs/disciplines, with the approval of the vice president of Academic and Student Affairs, may have requirements that are more stringent.

B. Academic Dishonesty:

It is expected that students will work together to solve problems, however students are...
expected to do their own work unless specifically assigned otherwise. Sharing or copying others work is un-ethical and will be discounted. A pattern of un-ethical behavior will result in the student being expelled from the class. Copying software will be considered theft.