PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE
MASTER SYLLABUS

MAJOR PROJECTS
EET 2601

Class Hours: 0.0  Credit Hours: 2.0
Laboratory Hours: 6.0  Revised: Fall 08

Catalog Course Description:
A project course in which the student and instructor identify a project to be pursued by the student. The student is required to submit the project for acceptance, acquire the parts and build and test the completed product. The student is required to develop a technical report and make a presentation before his/her peers on the project. In addition, students are required to complete a team report and presentation on a current technology, discussing its impact on society.

Entry Level Standards:
Students must be proficient in the basics of analog and digital circuit analysis, and have sufficient mastery of mathematics and communications skills to enable the student to demonstrate problem-solving ability with a selected project and articulate the results. The student must be able to synthesize and apply subject matter studied previously in the Electrical Engineering Technology curriculum.

Prerequisite:
EET 2220 and 2312

Textbook(s) and Other Course Materials:
No textbook is required. The student must procure all necessary parts to fabricate the circuit(s) required for this project. Cost varies a great deal usually $100.00 to $200.00.

I. Week/Unit/Topic Basis:
This course is not structured with a given unit in a text and a given topic for a given week as would be a lecture course. Each student has a different electronic project, and the degree of completion of the project at any given time will depend upon the student. The student must work independently and utilize the assistance of the instructor on an "as needed" basis. A number of films related to the course will be shown to the entire class at a time deemed best for the group. Soldering techniques, printed circuit board fabrication techniques, etc., will be demonstrated prior to the need of those techniques in the project implementation. The following shows a general guideline for progress in the implementation of the project.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Selection of a project finalized; log book started and timeline completed.</td>
</tr>
<tr>
<td>2</td>
<td>Parts ordered; design of printed circuit board begins.</td>
</tr>
<tr>
<td>3</td>
<td>Design of printed circuit board completed; artwork for printed circuit board produced on plotter.</td>
</tr>
</tbody>
</table>
Printed circuit board photographed, etched, drilled, etc.; parts received.

Assembly of printed circuit board begins.

Assembly of printed circuit board completed; board mated to enclosure (box, cabinet, etc.).

All interface connectors, power supply cable, etc., completed; circuit thoroughly inspected prior to application to power.

Testing of the circuit begins; data taken during recorded in log book; troubleshooting is accomplished as required; modifications are made as required.

Testing of the circuit continues; additional modifications (if any) are made.

Testing completed; test data reviewed for consistency and content; additional testing may be required if anomalies exist in the original test data which cannot be explained and warrant clarification.

Team Presentation and report due. Preparation of the technical report on the project begins.

Technical report completed; plans are made as to how the student will present his or her project to the panel of judges (selected from area industries).

Projects are evaluated.

Technical reports may be modified to include comments by the evaluator(s); technical reports submitted to the instructor.

Final project presentation
EET Exit Exam

II. Course Objectives*:

A. Effectively communicate with the technical and scientific community in the "common language" of Electrical Engineering Technology definitions, units, and relationships; experience in project planning and development. A, B, D, E, G

B. Understand and analyze a wide range of analog and digital circuits using basic analytical techniques learned in previous courses. A, B, C, D, E

C. Use word processing and software for printed-circuit board layout and schematic capture in the preparation of a comprehensive technical report. B, G, K

D. Be familiar with and fundamentally skilled in soldering and printed-circuit board fabrication, and in packaging an electronic project. B, D, E

E. Understand the methods of developing a comprehensive technical report and presenting the report in a professional manner before peers. G

F. Participate in critiquing the technical work of others, while maintaining respect for the person. I, K

G. Demonstrate an awareness of the social and global impact of an area of technology. J

H. Demonstrate, as an individual and as a team member, library/information skills, time
management skills, problem-solving skills, material management skills, and communication skills. D, F, G, H, I, J, K

*Letters after course objectives reference EET Program Outcomes (as required by ABET).

III. Instructional Processes*:

Students will:

1. Participate in classroom discussions which challenge their abilities to think creatively and visualize complex spatial and mathematical relationships to solve problems. *Mathematics Outcome*

2. Work in teams to conduct laboratory experiments and also to solve special problem assignments. These activities are designed to foster interpersonal skills in teamwork and develop and enhance leadership skills, students’ abilities to express ideas, and students’ abilities to reach consensus solutions for the team through negotiation. *Active Learning Strategy, Mathematics Outcome; Communication Outcome*

3. Use electronic test equipment to test electrical circuits constructed from schematics in the laboratory and acquire data. Use computers with applications software to simulate, analyze, and predict the behavior of electrical circuits. Compare expected responses to experimental responses of electrical circuits. Use the Internet for special assignments such as locating data sheets on electronic components. Use computers with word processing software to prepare reports. *Technological Literacy Outcome, Mathematics Outcome*

4. Prepare reports on laboratory experiments which include methodology, mathematical analyses of electrical circuit models, a comprehensive comparison of calculated results with experimental results, and conclusions. *Communication Outcome, Mathematics Outcome, Technological Literacy Outcome*

5. Discuss the importance of personal qualities such as personal responsibility, time management principles, self-esteem, sociability, self-management, integrity and honesty in school and in the workplace, and dynamics of change in the workplace. *Social and Behavioral Science Outcome, Transitional Strategy*

*Strategies and outcomes listed after instructional processes reference TBR’s goals for strengthening general education knowledge and skills, connecting coursework to experiences beyond the classroom, and encouraging students to take active and responsible roles in the educational process.

IV. Expectations for Student Performance*:

Upon successful completion of this course, the student should be able to:

1. Analyze analog electronic circuits using basic analytical techniques developed from fundamental laws, theorems, and procedures learned in previous courses. A,B

2. Analyze digital electronic circuits using basic analytical techniques developed from fundamental laws, theorems, and procedures learned in previous courses. A,B

3. Use library research in developing a project to meet a set of specifications. A,B

4. Perform experimental research to determine if a selected circuit will meet a set of specifications. A,B

5. Synthesize and apply subject matter studied in previous courses. A,B
6. Understand the dynamics of project planning and development from the conceptual stage through the process of the finished product. A

7. Interface sub-circuits with one another and the outside world. B

8. Use word processing (such as WordPerfect) and software for schematic capture on a personal computer to write a technical report. C

9. Use software on a personal computer for design layout of a printed-circuit board. C

10. Use a personal computer in conjunction with a plotter to produce the artwork for a printed-circuit board. C

11. Prepare a comprehensive technical report based on experimental data. A, C

12. Troubleshoot analog or digital circuitry or a combination of the two types of circuits. B

13. Use the printed-circuit board facility to photograph the printed-circuit board artwork, etch the printed-circuit board, drill holes in the board for leads of the circuit components, etc. D

14. Perform soldering satisfactorily. D

15. Package electronic circuitry. D

*Letters after performance expectations reference the course objectives listed above.

V. Evaluation:

A. Project, Presentation and Report: 50% of final grade.

The evaluation in the major projects course will be determined by a combination of: (1) difficulty of the project selected; (2) the level of effort put forth by the student to meet the specifications of the project; (3) the quality of work, including design analysis as well as workmanship in the printed-circuit board fabrication, packaging the circuit, etc.; (4) the presentation and content of the technical report. The project report required in this course will be evaluated according to presentation and content. From the presentation standpoint, organization, spelling, word usage, and grammar are important. In your presentation, you will be concerned with sub-skills such as synthesizing, organizing, documenting, arguing and summarizing. Up to 20% of the value of the report will be vested in the area of presentation. The remaining 80% of the value of the report will be vested in the content area. In the content area, you will be concerned with problem definition, concepts and requirements associated with your project, experimental results, analysis, conclusions and recommendations. Every aspect of the project must be documented, including a parts list and cost of the project. Graphics documentation will include design drawings (including system diagram, circuit design sketch, and packaging plan), schematic of the final circuit configuration, breadboard drawing (if project is breadboarded), printed-circuit board design layout drawing, printed-circuit board artwork, sheet metal drawings (if sheet metal fabrication is involved), and wiring diagrams. The instructor will provide you with a format guide for your report. The percentage of the total grade for the course vested in the project report may vary with instructors, but 25% is offered as a guide.

Project completion and workmanship - 30% of project grade
Presentation - 30% of project grade
Report - 30% of project grade
Logbook - 5% of project grade
Timeline - 5% of project grade
NOTE: The student will prepare for the instructor a weekly progress report which will be presented to the instructor in the last lab session in a given week. The report must be word processed and not be more one-half page or so. The student must notify the instructor immediately if the student encounters any problems with the student's project which might potentially hinder completion of the project by the specified deadline.

B. Testing Procedures: 30% of final grade

The testing evaluation in the classroom grade will be determined by a combination of Quizzes and an Exit Exam. The percentage that each of these factors count and the frequency of quizzes is left to the discretion of the instructor, but the following is offered as a guide:

7 Quizzes     30% of Test grade
Exit Exam:     70% of Test grade

C. Team Presentation and Report: 20% of grade.

D. Grading Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 - 100</td>
<td>A</td>
</tr>
<tr>
<td>88 - 92</td>
<td>B+</td>
</tr>
<tr>
<td>83 - 87</td>
<td>B</td>
</tr>
<tr>
<td>78 - 82</td>
<td>C+</td>
</tr>
<tr>
<td>70 - 77</td>
<td>C</td>
</tr>
<tr>
<td>60 - 69</td>
<td>D</td>
</tr>
<tr>
<td>Below 60</td>
<td>F</td>
</tr>
</tbody>
</table>

VI. Policies:

A. Attendance Policy:

Pellissippi State expects students to attend all scheduled instructional activities. As a minimum, students in all courses (excluding distance learning courses) must be present for at least 75 percent of their scheduled class and laboratory meetings in order to receive credit for the course. Individual departments/programs/disciplines, with the approval of the vice president of Learning, may have requirements that are more stringent. In very specific circumstances, an appeal of the policy may be addressed to the head of the department in which the course was taken. If further action is warranted, the appeal may be addressed to the vice president of Learning.

B. Academic Misconduct:

Academic misconduct committed either directly or indirectly by an individual or group is subject to disciplinary action. Prohibited activities include but are not limited to the following practices: Cheating, including but not limited to unauthorized assistance from material, people, or devices when taking a test, quiz, or examination; writing papers or reports; solving problems; or completing academic assignments. In addition to other possible disciplinary sanctions that may be imposed as a result of academic misconduct, the instructor has the authority to assign either (1) an F or zero for the assignment or (2) an F for the course.

C. Accommodations for Disabilities:

If you need accommodations because of a disability, if you have emergency medical information to share, or if you need special arrangements in case the building must be evacuated, please inform the instructor immediately. Please see the instructor privately after class or in his/her office. Students must present a current accommodation plan from a staff
member in Services for Students with Disabilities (SSWD) in order to receive accommodations in this course. Services for Students with Disabilities may be contacted by going to Goins 127 or 131 or by phone: 694-6751(Voice/TTY) or 539-7153.