PELLISIPPI STATE COMMUNITY COLLEGE
MASTER SYLLABUS
STATISTICAL PROCESS CONTROL
MET 2820

Class Hours: 3.0 Credit Hours: 4.0
Laboratory Hours: 0.0 Revised: Fall 2015

Catalog Course Description:
A study of the fundamental concepts and methodology of Statistical Process Control (SPC), with particular emphasis placed on laboratory projects to enhance hands-on operational experience. Topics include philosophy of SPC and other quality systems, basic statistical concepts, variable and attribute charting, and computer-assisted methods.

Entry Level Standards:
Students entering this course should have a fundamental knowledge of basic measuring and testing techniques.

Prerequisites:
MET 2810

Textbook(s) and Other Course Materials:

References:

I. Week/Unit/Topic Basis:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction & Philosophy</td>
</tr>
<tr>
<td>2-3</td>
<td>Basic Statistical Concepts</td>
</tr>
<tr>
<td>4-6</td>
<td>Control Charts For Variables</td>
</tr>
<tr>
<td>7-8</td>
<td>Process Capability</td>
</tr>
</tbody>
</table>
II. Engineering Technology General Outcomes (Educational objectives)

I. Apply basic engineering theories and concepts creatively to analyze and solve technical problems

II. Utilize with a high degree of knowledge and skill equipment, instruments, software, and technical reference materials currently used in industry.

III. Communicate effectively using developed writing, speaking, and graphics skills.

IV. Assimilate and practice the concepts and principles of working in a team environment.

V. Obtain employment within the discipline or matriculate to a four year program in engineering or industrial technology

III. Engineering Technology Concentration Competencies*

Students will:

A. Apply the knowledge, techniques, skills, and modern tools for the concentration of study to specifically defined engineering technology activities

B. Demonstrate the knowledge of mathematics, science, engineering and technology to engineering technology problems using developed practical knowledge

C. Conduct and report the results of standard tests and measurements, and conduct, analyze and interpret experiment or project results

D. Function effectively as a member of a technical team

E. Identify, analyze and solve specifically defined engineering technology-based problems

F. Employ written, oral and visual communication in a technical environment

- At the program level all 6 competencies apply to roman numerals I – V of the Engineering Technology General Outcomes (Educational objectives) listed above.

IV. Course Goals*:

The course will

1. demonstrate their understanding of the basic philosophy and principles of SPC. (A-C)

2. demonstrate their understanding of basic statistical concepts. (A-C)

3. set-up, initiate, and analyze a gage capability study by computer-assisted methods. (A-C, D)

4. set-up and initiate a variable control process by computer-assisted methods. (A-C, D)

5. set-up and initiate an attribute control process by computer-assisted methods. (A-C, D)
6. collect data and analyze results. (D)

7. communicate technical information. (F)

*Capital letters after course goals reference the competencies of the Engineering Technology concentrations listed above.

V. Expected Student Learning Outcomes*:

Students will be able to:

a. define, explain, and associate the terminology used in SPC. 1
b. apply and associate the principles of SPC. 1
c. calculate mean, median, mode, range, and standard deviation. 2
d. create a frequency distribution chart and histogram. 2
e. analyze a histogram for skewness, kurtosis, and normal distribution. 2
f. create a GR&R program by computer-assisted methods. 4
g. collect data and analyze results of gage capability study. 4 & 7
h. create computer-assisted program for a variable and attribute process. 5 & 6
i. collect data and analyze results for a variable and attribute process. 2, 5, 6, & 7
j. document technical information from gage capability, variable, and attribute processes in a neat and orderly format. 8

k. locate and extract needed information from operational and programming manuals. 8
l. complete assignments based on oral and written instructions. 8

*Numbers after Expected Student Learning Outcomes reference the course goals listed above.

VI. Evaluation:

A. Testing Procedures:

Evaluation of both classroom and laboratory work is required in this course. Total evaluation will be based on the following point distribution.

<table>
<thead>
<tr>
<th>Quizzes</th>
<th>25 Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximately 4-6 quizzes will be administered during the course. They will include discussion questions, short answer questions, true/false questions, and problem solving.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process Capability Project</th>
<th>10 Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Data Project</td>
<td>15 Points</td>
</tr>
<tr>
<td>Attribute Data Project</td>
<td>15 Points</td>
</tr>
<tr>
<td>Case Study</td>
<td>25 Points</td>
</tr>
</tbody>
</table>

The instructor will provide guidelines and requirements for each project.

<table>
<thead>
<tr>
<th>Participation</th>
<th>10 Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on instructor observation during the course, each student will be evaluated on participation activities. Evaluation parameters to include active participation in class discussions, being prepared, efficient use of lab time, striving to achieve more than minimum</td>
<td></td>
</tr>
</tbody>
</table>
requirements, and regular attendance.

B. Laboratory Expectations:

n/a

C. Field Work:

n/a

D. Other Evaluation Methods:

n/a

E. Grading Scale:

Final grade for this course will be based on the following alphabetical/numerical scale.

- **A** 93-100
- **B+** 88-92
- **B** 83-87
- **C+** 79-82
- **C** 74-78
- **D** 65-73
- **F** Below 65

VII. Policies:

A. Attendance Policy:

Pellissippi State expects students to attend all scheduled instructional activities. As a minimum, students in all courses (excluding distance learning courses) must be present for at least 75 percent of their scheduled class and laboratory meetings in order to receive credit for the course. Individual departments/programs/disciplines, with the approval of the vice president of Academic Affairs, may have requirements that are more stringent. In very specific circumstances, an appeal of the policy may be addressed to the head of the department in which the course was taken. If further action is warranted, the appeal may be addressed to the vice president of Academic Affairs.

B. Academic Dishonesty:

Academic misconduct committed either directly or indirectly by an individual or group is subject to disciplinary action. Prohibited activities include but are not limited to the following practices:
- Cheating, including but not limited to unauthorized assistance from material, people, or devices when taking a test, quiz, or examination; writing papers or reports; solving problems; or completing academic assignments.
- Plagiarism, including but not limited to paraphrasing, summarizing, or directly quoting published or unpublished work of another person, including online or computerized services, without proper documentation of the original source.
- Purchasing or otherwise obtaining prewritten essays, research papers, or materials prepared by another person or agency that sells term papers or other academic materials to be presented as one’s own work.
- Taking an exam for another student.
- Providing others with information and/or answers regarding exams, quizzes, homework or other classroom assignments unless explicitly authorized by the instructor.
- Any of the above occurring within the Web or distance learning environment.
C. Accommodations for disabilities:

Students that need accommodations because of a disability, have emergency medical information to share, or need special arrangements in case the building must be evacuated should inform the instructor immediately, privately after class or in her or his office. Students must present a current accommodation plan from a staff member in Disability Services (DS) in order to receive accommodations in this course. Disability Services may be contacted by sending email to disabilityservices@pstcc.edu, or by visiting Alexander 130. More information is available at http://www.pstcc.edu/sswd/.

D. Other Policies:

Safety and Equipment Abuse:
Repeated safety violations will result in a reduction of final grade, at the instructor's discretion. Flagrant violations which result in equipment damage or personal injury could result in automatic failure of the course