1) The Consumer Price Index (CPI) is a measure of inflation. The CPI for all urban consumers is the United States during 1999 was 2.7%. If this rate held, what should be the cost of a gallon of milk now if the inflation rate is compounded annually and the price of a gallon of milk was $2.29 in 1999?

\[A = P(1 + r)^n \]
\[A = 2.29(1 + 0.027)^9 \]
\[A = \$2.91 \]

2) Gene received a $25000 holiday bonus from his employer. He placed the bonus in an account earning 4.25% interest compounded monthly. How much is in his account after 6 years?

\[A = 25000 \left(1 + \frac{0.0425}{12}\right)^{6 \times 12} \]
\[A = \$32,247.01 \]

3) Alec and Lexi figure that they will need $20,000 in 4 years to remodel their kitchen. How much should they invest now at 4.75% interest compounded quarterly to have the $20,000 in 4 years?

\[20,000 = P(1 + \frac{0.0475}{4})^{16} \]
\[20,000 = P(1.011875)^{16} \]
\[P = \$16,557.70 \]
4) Jorge and Jenna have $10,000 to invest toward the purchase of a $16,000 ski boat. How many years will it take for the $10,000 to grow to at least $16,000 if it is invested at 5.25% compounded quarterly? You should either use logarithms or a graphical approach to solve this problem.

\[A = P(1+i)^n \]
\[16,000 = 10,000(1+0.0525)^4t \]
\[16 = 1.013125^{4t} \]
\[\frac{\log 1.6}{\log 1.013125} = 4t \]
\[9.011 = 4t \]
\[t = 2.25275 \] years.

5) As of May 17, 2001, First Internet Bank of Indiana offered a money market account paying 4.50% compounded monthly. NetBank offered a money market account paying 4.40% interest compounded daily. Compute the effective rates for both accounts. Is one account a better investment than the other?

Effective Rate Formula: \(r_e = \left(1 + \frac{r}{m}\right)^m - 1 \)

F.I.B.I. 4.594%
NetBank 4.498%

6) How long will it take an investment to double if it is invested at (a) 4% compounded annually? (b) 6% compounded annually? (c) 8% compounded annually? Use logarithms or a graphical approach to calculate the answers. (Round each answer to 3 decimal places.)

\[A = P(1+i)^n \]
\[2 = (1.04)^n \]
\[\log 2 = \log 1.04^n \]
\[\frac{\log 2}{\log 1.04} = n \]
\[n = \frac{\log 2}{\log 1.04} \approx 17.673 \] years.

(a) 17.673 yrs.
(b) 11.896 yrs.
(c) 9.006 yrs.

7) The rule of 70 states that the annual compound rate of growth \(r \) of an investment that doubles in \(t \) years can be approximated by \(r = \frac{70}{t} \) or \(t = \frac{70}{r} \). How does the rule of 70 work in the examples above?

\[a) \frac{70}{4} = 17.5 \text{ yrs} \]
\[b) \frac{70}{6} = 11.6 \text{ yrs} \]
\[c) \frac{70}{8} = 8.75 \text{ yrs} \].
8) Determine the nominal rate if the effective rate is 6.25% compounded quarterly.

\[r_E = (1 + \frac{r}{m})^m - 1 \]
\[0.0625 = (1 + \frac{r}{4})^4 - 1 \]
\[1.0625 = (1 + \frac{r}{4})^4 \]

\[4\sqrt[4]{1.0625} = 1 + \frac{r}{4} \]
\[1.01535525 = (1 + \frac{r}{4}) \]
\[r = 4\left(\frac{1.0625}{4} - 1\right) = 0.06108637 \]

\[\boxed{6.109\%} \]

9) One investment pays 9% simple interest and another pays 6% compounded monthly. Which investment should you choose? Explain, using a graphical approach. Make a sketch, and give the coordinates of the point of intersection.

Eventually the interest being compounded will always overcome the simple interest even though it has a lower rate.

![Graph showing the comparison between simple interest and compounded interest.](image)

The effect on each dollar invested would be.

If investment is for 13 or more years, 6% compounded account is best choice.

If investment is for 12 or less years, 9% simple interest account is best choice.