Section 3-4

Measures of Relative Standing & Boxplots

Measures of Relative Standing

• Measures of relative standing (or measures of position) indicate the position of a single data value relative to the rest of the data set.

<table>
<thead>
<tr>
<th>On which test did you do better on?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Test 1</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Mean: 70.0</td>
</tr>
<tr>
<td>Standard Deviation: 5.0</td>
</tr>
<tr>
<td>Your Score: 80</td>
</tr>
</tbody>
</table>
On which test did you do better on *relative to the rest of the class*?

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>70.0</td>
<td>71.7</td>
</tr>
<tr>
<td>SD</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Your Score</td>
<td>80</td>
<td>78</td>
</tr>
</tbody>
</table>

z Score

- The *z score* (or *standard score*) is the number of standard deviations that a given value x is above (+) or below (−) the mean.

- The *z score* is positive if the value is above the mean and negative if the value is below the mean.

$$z = \frac{x - \bar{x}}{s} \quad z = \frac{x - \mu}{\sigma}$$

Round to 2 decimal places.
On which test did you do better on relative to the rest of the class?

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean:</td>
<td>70.0</td>
<td>71.7</td>
</tr>
<tr>
<td>Standard Deviation:</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Your Score:</td>
<td>80</td>
<td>78</td>
</tr>
</tbody>
</table>

Interpreting z Scores

- Using the range rule of thumb we can say the following:
- “Usual” values have z scores between -2 and 2.
- “Unusual” values have z scores greater than 2 or less than -2.

Quartiles, Deciles, & Percentiles

- Three quartiles (designated Q_1, Q_2, and Q_3) divide the data into four equal parts of 25% each.
- Nine deciles (designated D_1, D_2, …, D_9) divide the data into ten equal parts of 10% each.
- 99 percentiles (designated P_1, P_2, …, P_{99}) divide the data into 100 equal parts of 1% each.
Percentiles

- \(P_1 \) (1st Percentile) separates the bottom 1% of sorted values from the top 99%.
- \(P_2 \) (2nd Percentile) separates the bottom 2% of sorted values from the top 98%.
- ...
- \(P_{99} \) (99th Percentile) separates the bottom 99% of sorted values from the top 1%.

Quartiles

- \(Q_1 \) (First Quartile) separates the bottom 25% of sorted values from the top 75%.
- \(Q_2 \) (Second Quartile) separates the bottom 50% of sorted values from the top 50%.
- \(Q_3 \) (Third Quartile) separates the bottom 75% of sorted values from the top 25%.

Relationship between Quartiles and Percentiles

Note that

\[Q_1 = P_{25} \]
\[Q_2 = P_{50} = \text{Median} \]
\[Q_3 = P_{75} \]
The Interquartile Range (IQR)

- The interquartile range (or IQR) is defined to be
 \[Q_3 - Q_1 \]
 the difference between the first and third quartile.

5-Number Summary

- For a set of data, the **5-number summary** consists of the minimum value; the first quartile, \(Q_1 \); the median (or second quartile, \(Q_2 \)); the third quartile, \(Q_3 \); and the maximum value.

Boxplot

- A **boxplot** (or box-and-whisker-diagram) is a graph of a data set that consists of a line extending from the minimum value to the maximum value, and a box with lines drawn at the first quartile, \(Q_1 \); the median; and the third quartile, \(Q_3 \).
Boxplots

Figure 2-17