Introduction to Limits

- The concept of a limit is our doorway to calculus. This lecture will explain what the limit of a function is and how we can find such a limit. Be sure you understand function notation at this point, it will be used throughout the remainder of the course.

- Consider the function

$$f(x) = \frac{x^4 - 16}{x - 2}$$

Note that the domain of f is $\{x | x \neq 2\}$. What does the graph look like near $x = 2$? We can certainly graph the function with our graphing calculator & see what happens. Before we do this, though, let’s look at the value (output) of f for values of x close to 2. These can be seen in the following table.

<table>
<thead>
<tr>
<th>x</th>
<th>1.99</th>
<th>1.999</th>
<th>1.9999</th>
<th>2.0001</th>
<th>2.001</th>
<th>2.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>31.761</td>
<td>31.976</td>
<td>31.998</td>
<td>32.002</td>
<td>32.024</td>
<td>32.241</td>
</tr>
</tbody>
</table>

Note that as x approaches (gets close to) 2, the value of $f(x)$ seems to be approaching 32. We say "The limit of $f(x)$ as x approaches 2 is 32" and write

$$\lim_{x \to 2} f(x) = 32$$

Graph the function over the intervals $0 \leq x \leq 4$ and $0 \leq y \leq 40$. Describe what is happening to the graph of f as x approaches 2. Note how the graph shows the same behavior as the table above describes.

- The following is an intuitive definition for the limit of a function: If $f(x)$ gets arbitrarily close to a real number L as x approaches (gets close to) a, then

$$\lim_{x \to a} f(x) = L \text{ OR } f(x) \to L \text{ as } x \to a$$

We say this as "the limit of $f(x)$ as x approaches a is $L".

- The phrase "gets arbitrarily close to" basically means as close as we like.
- If $f(x)$ does NOT get arbitrarily close to a real number L, we say that the limit does not exist. We will write DNE from now on if the limit does not exist.
- Note that in the previous example $f(2)$ does not exist (is undefined), but $\lim_{x \to 2} f(x)$ DOES exist.

Hence, for a limit to exist at a, the function does not have to be defined at a.

Finding Limits Numerically & Graphically

- When finding limits numerically we will basically construct a table of values as we did in the example above. When finding limits graphically we will look at the graph of the function to estimate limits. Here are some examples:

1. Estimate numerically $\lim_{x \to 9} g(x)$ if

$$g(x) = \frac{\sqrt{x} - 3}{x - 9}$$

We construct a table of values for $g(x)$ for values of x close to 9.

<table>
<thead>
<tr>
<th>x</th>
<th>8.9</th>
<th>8.99</th>
<th>8.999</th>
<th>9.001</th>
<th>9.01</th>
<th>9.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(x)$</td>
<td>0.16713</td>
<td>0.16671</td>
<td>0.16667</td>
<td>0.16666</td>
<td>0.16662</td>
<td>0.16621</td>
</tr>
</tbody>
</table>

It appears that as x approaches 9 that $g(x)$ is getting closer to 0.16666... or $0.1\overline{6} = \frac{1}{6}$ (see below).
Hence, it appears that

\[\lim_{x \to 9} g(x) = \frac{1}{6} \]

Side Note: Do you know how to convert from a non-terminating but repeating decimal expansion like 0. 1 6 6 to its equivalent fraction? Here’s one way:

Let \(n = 0. 1 6 6 \). Then \(10n = 1. 6 6 \) and \(100n = 16. 6 6 \). Thus

\[90n = 100n - 10n = 16. 6 6 - 1. 6 6 = 15 \]

Thus

\[90n = 15 \Rightarrow n = \frac{15}{90} = \frac{1}{6} \]

2. Construct a table of values for \(f(x) = \frac{\sin x}{x} \) for \(x \) close to zero to estimate \(\lim_{x \to 0} \frac{\sin x}{x} \)

What mode should we be in? (radian or degree?)

Here is such a table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>±0.1</th>
<th>±0.01</th>
<th>±0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\sin x}{x} \approx)</td>
<td>0.99833417</td>
<td>0.9999833</td>
<td>0.9999998</td>
</tr>
</tbody>
</table>

Thus it appears that

\[\lim_{x \to 0} \frac{\sin x}{x} = 1 \]

This is an important limit we will see again. Look at the graph of \(\frac{\sin x}{x} \) over the intervals \(-\pi \leq x \leq \pi \) & \(-2 \leq y \leq 2\) to confirm the numerical approach.

3. An example of a limit that does not exist (DNE).

Consider the function \(f(x) = \sin \frac{1}{x} \). Note that the domain of \(f \) is all real numbers except 0. What can we say about

\[\lim_{x \to 0} \sin \frac{1}{x} \]

When we try to graph this function for values of \(x \) near zero, our graphing calculator has problems.

Graph \(f \) over the intervals \(-2 \leq y \leq 2\) and (1) \(-3 \leq x \leq 3\), (2) \(-1 \leq x \leq 1\), (3) \(-0.1 \leq x \leq 0.1\), and finally (4) \(-0.01 \leq x \leq 0.01\). What do you observe? What is happening?

Recall that

\[\sin t = 1 \hspace{0.5cm} \text{if} \hspace{0.5cm} t = \frac{\pi}{2} + 2n\pi = \frac{\pi}{2} + \frac{4n\pi}{2} = \frac{\pi(1 + 4n)}{2} \hspace{0.5cm} \text{for} \hspace{0.5cm} n = 0, \pm 1, \pm 2, \pm 3, \ldots \]

and

\[\sin t = -1 \hspace{0.5cm} \text{if} \hspace{0.5cm} t = \frac{3\pi}{2} + 2n\pi = \frac{3\pi}{2} + \frac{4n\pi}{2} = \frac{\pi(3 + 4n)}{2} \hspace{0.5cm} \text{for} \hspace{0.5cm} n = 0, \pm 1, \pm 2, \pm 3, \ldots \]

So

\[\sin \frac{1}{x} = 1 \hspace{0.5cm} \text{when} \hspace{0.5cm} \frac{1}{x} = \frac{\pi(1 + 4n)}{2} \hspace{0.5cm} \text{or when} \hspace{0.5cm} x = \frac{2}{\pi(1 + 4n)} \hspace{0.5cm} \text{for} \hspace{0.5cm} n = 0, \pm 1, \pm 2, \pm 3, \ldots \]

Thus \(f(x) = 1 \) when

\[x = \frac{2}{\pi}, \frac{2}{5\pi}, \frac{2}{9\pi}, \frac{2}{13\pi}, \ldots, \frac{2}{\pi(1 + 4n)}, \ldots \]

Note that as \(n \to \infty \), \(x \to 0 \). Or saying it another way, between any positive number \(x \) and zero, there are an INFINITE number of times when \(f(x) = 1 \). In a similar manner,
\[
\sin \frac{1}{x} = -1 \text{ when } \frac{1}{x} = \frac{\pi(3 + 4n)}{2} \text{ or when } x = \frac{2}{\pi(3 + 4n)} \text{ for } n = 0, \pm 1, \pm 2, \pm 3, \ldots
\]

Thus \(f(x) = -1 \) when
\[
x = \frac{2}{3\pi}, \frac{2}{7\pi}, \frac{2}{11\pi}, \frac{2}{15\pi}, \ldots, \frac{2}{\pi(3 + 4n)}, \ldots
\]

Note that as \(n \to \infty, x \to 0 \). Or saying it another way, between any positive number \(x \) and zero, there are an INFINITE number of times when \(f(x) = -1 \).

Thus we see that as \(x \) gets close to zero, \(f(x) \) begins to wildly oscillate between \(-1\) and \(1\). In essence, \(f(x) \) can never "settle down" and approach any one limit. Thus \(\lim_{x \to 0} \sin \frac{1}{x} \) DNE.

4. When Technology Fails.
We saw in the last example that our graphing calculator had troubles graphing the function for values of \(x \) close to zero. This example shows another type error we can run into.

If \(g(t) = \frac{\sqrt{t^4 + 1} - 1}{t^4} \), estimate numerically the following limit
\[
\lim_{t \to 0} g(t)
\]

We proceed by constructing a table of values for \(x \) close to zero

<table>
<thead>
<tr>
<th>(t)</th>
<th>±0.1</th>
<th>±0.01</th>
<th>±0.001</th>
<th>±0.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(t))</td>
<td>0.49999</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Up to \(x = \pm 0.01 \), we may guess that the limit appears to be approaching \(\frac{1}{2} \). But, if we get closer to zero, we see the limit appears to be zero. What is going on?

The problem is that when your graphing calculator evaluates \(\sqrt{t^4 + 1} \) for small values of \(t \), the result is very close to 1. In fact, if you plug in \(t = \pm 0.001 \) in the TI-84 the result is zero. This is due to the limitations of the graphing calculator & the number of digits the calculator is able to carry (Graph \(g \) with \(0 \leq y \leq 1 \) over (1) \(-4 \leq x \leq 4 \) and the (2) \(-0.01 \leq x \leq 0.01 \). The value of this limit is \(\frac{1}{2} \) which will be able to show later.

One-Sided Limits

Consider the function

\[
f(x) = \begin{cases}
1 & \text{if } x < 2 \\
3 & \text{if } x > 2
\end{cases}
\]

The graph of \(f \) is shown below

Note that as \(x \) approaches 2 from the left (or from the negative side or from below) \(f(x) \) approaches 1 (it is always 1 for \(x < 2 \)). But as \(x \) approaches 2 from the right (or from the positive side or from above) \(f(x) \) approaches 3. Since we do not approach any ONE value from both "sides", \(\lim_{x \to 2} f(x) \) DNE.

When \(f(x) \) approaches 1 as \(x \) approaches 2 from the left we write
\[
\lim_{x \to 2^-} f(x) = 1
\]
and we say "the limit of \(f(x)\) as \(x\) approaches 2 from the left is 1" or "the left-hand limit of \(f(x)\) as \(x\) approaches 2 is 1". Similarly, When \(f(x)\) approaches 3 as \(x\) approaches 2 from the right we write
\[
\lim_{x \to 2^+} f(x) = 3
\]
and we say "the limit of \(f(x)\) as \(x\) approaches 2 from the right is 3" or "the right-hand limit of \(f(x)\) as \(x\) approaches 2 is 3".

\[\text{With one-sided limits we have the following useful theorem}
\]
\[
\lim_{x \to a} f(x) = L \text{ if and only if } \lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x)
\]
That is, \(\lim_{x \to a} f(x) = L\) if and only if both one-sided limits exist and are both equal to \(L\).

\[\text{Consider the function}
\]
\[
\frac{|x|}{x} = \begin{cases}
-1 & \text{if } x < 0 \\
1 & \text{if } x > 0
\end{cases}
\]

The graph of the function is shown below

\[\text{Note that } \lim_{x \to 0^-} \frac{|x|}{x} = -1, \text{ but } \lim_{x \to 0^+} \frac{|x|}{x} = 1. \text{ Both one-sided limits exist, but they are not equal. Thus}\]
\[\lim_{x \to 0} \frac{|x|}{x} \text{ DNE.}\]

\[\text{Consider the function } h(x) \text{ whose graph is shown below. Find the following limits (if they exist)}
\]
\[\text{ (a) } \lim_{x \to -2^-} h(x) \text{ (b) } \lim_{x \to -2^+} h(x) \text{ (c) } \lim_{x \to -2} h(x) \text{ (d) } \lim_{x \to 1^-} h(x) \text{ (e) } \lim_{x \to 1^+} h(x) \text{ (f) } \lim h(x)\]

\[\text{Infinite Limits}
\]
\[\text{Let’s try to find the limit } \lim_{x \to 0} \frac{1}{x^2} \text{ We proceed numerically, constructing a table of values for } x \text{ close to zero.}\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>±0.1</th>
<th>±0.01</th>
<th>±0.001</th>
<th>±0.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{x^2})</td>
<td>100</td>
<td>10,000</td>
<td>1,000,000</td>
<td>100,000,000</td>
</tr>
</tbody>
</table>
As \(x \) gets closer to zero, the value of \(\frac{1}{x^2} \) continues to get bigger and bigger. It does NOT approach any finite number. Thus, we approach no FINITE limit. To indicate this kind of behavior we introduce the notation

\[
\lim_{x \to 0} \frac{1}{x^2} = \infty
\]

and say that \(f \) has an infinite limit. Note that this does NOT mean \(\infty \) is a number (which it is not). It simply expresses the idea that the value of the function gets arbitrarily large (as large as we want) as \(x \) gets close to 0. When we see this expression, we say "the limit is infinity" or "the function increases without bound".

If a function \(f \) gets arbitrarily large BUT NEGATIVE as \(x \) approaches \(a \), we write

\[
\lim_{x \to a} f(x) = -\infty
\]

We can say similar statements with one-sided limits.

Examples:
1. For the function \(g \) shown below find the following limits or write DNE.

 \[
 \begin{align*}
 &\lim_{x \to -2} g(x) &\lim_{x \to -2^+} g(x) &\lim_{x \to -2^-} g(x) \\
 &\lim_{x \to 3} g(x) &\lim_{x \to 3^+} g(x) &\lim_{x \to 3^-} g(x)
 \end{align*}
 \]

2. Show that \(\lim_{x \to 0^+} \ln x = -\infty \).