INTEGRATION OF IMPROPER INTEGRALS

Objectives: Evaluate integrals on infinite intervals and intervals which have infinite discontinuities

Improper integrals

- May be defined on an infinite interval
- May have an infinite discontinuity
- Are used in probability distributions

The improper integrals \(\int_{a}^{\infty} f(x) \, dx \) and \(\int_{-\infty}^{b} f(x) \, dx \) are said to be convergent if the corresponding [finite] limit exists and divergent if the [finite] limit does not exist.

Type I: Infinite intervals

- \(A(t) = \int_{1}^{t} \frac{1}{x^2} \, dx = \left[-\frac{1}{x} \right]_{1}^{t} = 1 - \frac{1}{t} \)
- The unbounded region extends indefinitely in a horizontal direction
- Note that \(A(t) < 1 \) no matter how large \(t \) is chosen
- \(\lim_{t \to \infty} A(t) = \lim_{t \to \infty} \left(1 - \frac{1}{t} \right) = 1 \)
- Area of shaded region approaches 1 as \(t \to \infty \)
- \(\int_{1}^{\infty} \frac{1}{x^2} \, dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2} \, dx = 1 \)
- The integral is convergent

Integrate \(\int_{-\infty}^{0} \frac{1}{2x - 5} \, dx \)

HINT: \(\int_{-\infty}^{0} \frac{1}{2x - 5} \, dx = \lim_{t \to \infty} \int_{t}^{0} \frac{1}{2x - 5} \, dx \)
Type 1 improper integral

- If \(\int_a^t f(x) \, dx \) exists for every number \(t \geq a \), then
 \[\int_a^\infty f(x) \, dx = \lim_{t \to \infty} \int_a^t f(x) \, dx, \]
 provided this [finite] limit exists.

- If \(\int_t^b f(x) \, dx \) exists for every number \(t \leq b \), then
 \[\int_{-\infty}^b f(x) \, dx = \lim_{t \to -\infty} \int_t^b f(x) \, dx, \]
 provided this [finite] limit exists.

- The improper integrals \(\int_a^\infty f(x) \, dx \) and \(\int_{-\infty}^b f(x) \, dx \) are said to be convergent if the corresponding [finite] limit exists and divergent if the [finite] limit does not exist.

- If both \(\int_a^\infty f(x) \, dx \) and \(\int_{-\infty}^a f(x) \, dx \) are convergent, then we define
 \[\int_{-\infty}^\infty f(x) \, dx = \int_{-\infty}^a f(x) \, dx + \int_a^\infty f(x) \, dx \]
 for any real number \(a \).

Is \(\int_1^\infty \frac{1}{x} \, dx \) convergent or divergent?

- \[\lim_{t \to \infty} \int_1^t \frac{1}{x} \, dx = \lim_{t \to \infty} \left[\ln |x| \right]_1^t = \lim_{t \to \infty} (\ln t - \ln 1) = \lim_{t \to \infty} (\ln t) = \infty \]

- Therefore, \(\int_1^\infty \frac{1}{x} \, dx \) is divergent.

- Compare this result to \(\int_1^\infty \frac{1}{x^2} \, dx \) which converges.

- In general, \(\int_1^\infty \frac{1}{x^p} \, dx \) is convergent if \(p > 1 \) and divergent if \(p \leq 1 \)

Type 2: Discontinuous integrands

- \(f \) is continuous on a finite interval \([a, b)\)
- The unbounded region is infinite in a vertical direction

Type 2 improper integrals

- If \(f \) is continuous on \([a, b]\) and is discontinuous at \(b \), then
 \[\int_a^b f(x) \, dx = \lim_{t \to b^-} \int_a^t f(x) \, dx, \]
 if this [finite] limit exists.

- If \(f \) is continuous on \([a, b]\) and is discontinuous at \(a \), then
 \[\int_a^b f(x) \, dx = \lim_{t \to a^+} \int_t^b f(x) \, dx, \]
 if this [finite] limit exists.
• The improper integral \(\int_a^b f(x) \, dx \) is said to be convergent if the corresponding [finite] limit exists and divergent if the [finite] limit does not exist.

• If \(f \) has a discontinuity at \(c \), where \(a < c < b \), and both \(\int_a^c f(x) \, dx \) and \(\int_c^b f(x) \, dx \) are convergent, then we define \(\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx \).

Evaluate \(\int_0^3 \frac{dx}{x - 1} \):

• This is not an ordinary definite integral because there is a vertical asymptote \(x = 1 \).
• Improper integrals must be calculated in terms of limits!

\(\int_0^3 \frac{dx}{x - 1} = \int_0^1 \frac{dx}{x - 1} + \int_1^3 \frac{dx}{x - 1} \)

where \(\int_0^1 \frac{dx}{x - 1} = \lim_{t \to 1^-} \int_0^t \frac{dx}{x - 1} = \lim_{t \to 1^-} [\ln |x - 1|]_0^t = \lim_{t \to 1^-} (\ln|t - 1| - \ln|1|) = \lim_{t \to 1^-} \ln(1 - t) = -\infty \)

Since \(\int_0^1 \frac{dx}{x - 1} \) is divergent, so is \(\int_0^3 \frac{dx}{x - 1} \).

Comparison test for improper integrals:

• Suppose that \(f \) and \(g \) are continuous functions with \(f(x) \geq g(x) \geq 0 \) for \(x \geq a \).
• If \(\int_a^\infty f(x) \, dx \) is convergent, then \(\int_a^\infty g(x) \, dx \) is also convergent.
• If \(\int_a^\infty g(x) \, dx \) is divergent, then \(\int_a^\infty f(x) \, dx \) is also divergent.

Solutions:

\(\int_{-\infty}^0 \frac{1}{2x - 5} \, dx = \lim_{t \to -\infty} \int_t^0 \frac{1}{2x - 5} \, dx = \lim_{t \to -\infty} \left[\frac{1}{2} \ln |2x - 5| \right]_t^9 = \lim_{t \to -\infty} \left[\frac{1}{2} \ln 5 - \frac{1}{2} \ln |2t - 5| \right] = -\infty \)

divergent