Determining Sample Size to Estimate p and μ

Determining Sample Size to Estimate p

\[
E = z_{\alpha/2} \sqrt{\hat{p} \hat{q}/n}
\]

(solve for n by algebra)

\[
n = \frac{(z_{\alpha/2})^2 \hat{p} \hat{q}}{E^2}
\]

Sample Size for Estimating Proportion p

When an estimate of \hat{p} is known:

\[
n = \frac{(z_{\alpha/2})^2 \hat{p} \hat{q}}{E^2}
\]

Formula 6-2

When no estimate of \hat{p} is known:

\[
n = \frac{(z_{\alpha/2})^2 0.25}{E^2}
\]

Formula 6-3
Two Formulas for Estimating Proportion p

When an estimate of \hat{p} is known:

$$n = \left(\frac{z_{\alpha/2}}{E} \right)^2 \hat{p} \hat{q}$$

When no estimate of \hat{p} is known:

$$n = \left(\frac{z_{\alpha/2}}{E} \right)^2 0.25$$

Round-Off Rule for Sample Size n

In order to ensure that the required sample size is at least as large as it should be, if the computed sample size is not a whole number, round it up to the next higher whole number.
Example: We want to determine, with a margin of error of four percentage points, the current percentage of U.S. households using e-mail. Assuming that we want 90% confidence in our results, how many households must we survey? A 1997 study indicates 16.9% of U.S. households used e-mail. To be 90% confident that our sample percentage is within four percentage points of the true percentage for all households, we should randomly select and survey 238 households.

\[n = \left(\frac{z_{\alpha/2}}{E} \right)^2 p q \]
\[= \left(\frac{1.645}{0.04} \right)^2 (0.169)(0.831) \]
\[= 237.51965 \]
\[= 238 \text{ households} \]

Example: We want to determine, with a margin of error of four percentage points, the current percentage of U.S. households using e-mail. Assuming that we want 90% confidence in our results, how many households must we survey? There is no prior information suggesting a possible value for the sample percentage. With no prior information, we need a larger sample to achieve the same results with 90% confidence and an error of no more than 4%.

\[n = \left(\frac{z_{\alpha/2}}{E} \right)^2 \]
\[= \left(\frac{1.645}{0.04} \right)^2 (0.25) \]
\[= 422.81641 \]
\[= 423 \text{ households} \]

Sample Size for Estimating Mean \(\mu \)

\[E = \frac{z_{\alpha/2} \sigma}{\sqrt{n}} \]

(solve for \(n \) by algebra)

\[n = \left(\frac{z_{\alpha/2} \sigma}{E} \right)^2 \]

\(z_{\alpha/2} \) = critical z score based on the desired degree of confidence
\(E \) = desired margin of error
\(\sigma \) = population standard deviation
Round-Off Rule for Sample Size n

In order to ensure that the required sample size is at least as large as it should be, if the computed sample size is not a whole number, round it up to the next higher whole number.

$$n = 216.09 = 217 \text{ (rounded up)}$$

Example: If we want to estimate the mean weight of plastic discarded by households in one week, how many households must be randomly selected to be 99% confident that the sample mean is within 0.25 lb of the true population mean? (A previous study indicates the standard deviation is 1.065 lb.)

$$\alpha = 0.01, \quad z_{\alpha/2} = 2.575, \quad E = 0.25, \quad s = 1.065$$

$$n = \frac{z_{\alpha/2} \sigma}{E}^2 = \frac{(2.575)(1.065)}{0.25}^2 = 120.3 = 121 \text{ households}$$

We would need to randomly select 121 households and obtain the average weight of plastic discarded in one week. We would be 99% confident that this mean is within $\frac{1}{4}$ lb of the population mean.

What if σ is Not Known?

1. Use the range rule of thumb to estimate the standard deviation as follows: $\sigma \approx \frac{\text{range}}{4}$

2. Conduct a pilot study by starting the sampling process. Based on the first collection of at least 31 randomly selected sample values, calculate the sample standard deviation s and use it in place of σ. That value can be improved as more sample data are obtained.

3. Estimate the value of σ by using the results of some other study that was done earlier.
What happens if you settle for less accurate results; that is, you increase your margin of error?

What happens when \(E \) is doubled?

\[
E = 1 : \quad n = \left(\frac{z_{\alpha/2} \sigma}{1} \right)^2 = \left(\frac{z_{\alpha/2} \sigma}{1} \right)^2
\]

\[
E = 2 : \quad n = \left(\frac{z_{\alpha/2} \sigma}{2} \right)^2 = \left(\frac{z_{\alpha/2} \sigma}{2} \right)^2
\]

- Sample size \(n \) is decreased to 1/4 of its original value if \(E \) is doubled.
- Larger errors allow smaller samples.
- Smaller errors require larger samples.