Ex. What do the y-values of the graph of $f(x) = \frac{\sin x}{x}$ approach as the x-values approach 0?

Look at a table of values for the function as $x \to 0$ (use ASK mode)

<table>
<thead>
<tr>
<th>x</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.99983</td>
</tr>
<tr>
<td>0.01</td>
<td>0.99998</td>
</tr>
<tr>
<td>-1</td>
<td>0.99983</td>
</tr>
<tr>
<td>-0.1</td>
<td>0.99998</td>
</tr>
</tbody>
</table>

Look at the graph as $x \to 0$ (ZOOMDEC)

Based on the numerical data and the graphical data the graph seems to approach $y = 1$ as $x \to 0$.

But, the function is not defined at $x = 0$.

Look at the graph with the axes turned off. (2nd FORMAT, AxesOff)

You can barely tell, but there is a hole in the graph at $x = 0$. The function is not defined there.

DEFINITION OF LIMIT: We write

$$\lim_{x \to a} f(x) = L$$

and say “the limit of $f(x)$ as x approaches a, equals L”

if we can make the values of $f(x)$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to equal a.

When evaluating limits, you’re actually finding the “intended value” of the function as it approaches a certain x-value.

In the above example the function $f(x) = \frac{\sin x}{x}$ is not defined at $x = 0$, but we can say that the limit as x approaches 0 does equal 1 because that is the “intended” y-value the graph approaches.

So $\lim_{x \to 0} \frac{\sin x}{x}$ does exist and $\lim_{x \to 0} \frac{\sin x}{x} = 1$, regardless of whether or not the function is defined there.
Ex. Evaluate these limits either graphically or numerically (using your table):

\[a) \lim_{x \to 2} 2x^2 - 3x + 5 \quad b) \lim_{x \to 1} \frac{x^2 - 3x - 4}{x + 1} \]

SOLUTION:*

a) There’s no trouble just plugging in the value \(x = 2 \) into the function. This would give us the value of the limit as \(x \to 2 \). You should get a limit of \(L = 7 \).

b) If you consider a table of values, you notice you can’t simply plug in \(x = -1 \) because the function isn’t defined there, but as the table suggests, the \(y \)-values approach a limit of \(-5 \), so

\[\lim_{x \to -1} \frac{x^2 - 3x - 4}{x + 1} = -5 \]

Left hand and Right hand limits: When using your table to evaluate these limits you’ve considered values to the left and to the right of the central \(x \) value you’re approaching. These are called the left hand and right hand limits of the function \(f(x) \).

\[\lim_{x \to a^-} f(x) = L \quad \text{taking values of } x \text{ approaching } a \text{ from the left, } x < a \]

\[\lim_{x \to a^+} f(x) = L \quad \text{taking values of } x \text{ approaching } a \text{ from the right, } x > a \]

IMPORTANT! The limit \(\lim_{x \to a} f(x) = L \) exists ONLY if \(\lim_{x \to a^-} f(x) = L \) AND \(\lim_{x \to a^+} f(x) = L \)

Ex. Given the following graph evaluate the following quantities:

Ex. Sketch a graph of an example of a function \(f(x) \) that satisfies the following conditions:

\[\lim_{x \to -1} f(x) = 4 \quad \lim_{x \to 1} f(x) = -2 \quad f(-1) \text{ is undefined} \]

\[\lim_{x \to 3} f(x) = 0 \quad f(3) = 6 \]