The Derivative of Sine

To differentiate the function $f(x) = \sin x$, we'll start with its difference quotient limit:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

The expression $\sin(x+h)$ can be expanded using a formula from trig:

$$\sin(x+h) = \sin(x)\cos(h) + \cos(x)\sin(h)$$

Rearrange the terms up top and then separate the numerator:

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

After some further algebraic rearranging, this limit becomes

$$\lim_{h \to 0} \sin(x)\cdot \left(\frac{\cos(h) - 1}{h}\right) + \cos(x)\cdot \left(\frac{\sin(h)}{h}\right)$$

Since $\lim_{h \to 0} \left(\frac{\cos(h) - 1}{h}\right) = 0$ and $\lim_{h \to 0} \left(\frac{\sin(h)}{h}\right) = 1$, the difference quotient limit becomes

$$\lim_{h \to 0} \sin(x)\cdot \left(\frac{\cos(h) - 1}{h}\right) + \cos(x)\cdot \left(\frac{\sin(h)}{h}\right) = \sin(x)\cdot (0) + \cos(x)\cdot (1) = \cos x$$

After all the calculations, we have finally shown that the derivative of $f(x) = \sin x$ is $f'(x) = \cos x$ (Now, let's work the derivative of $f(x) = \cos x$)

Derivatives of the Trigonometric Functions (KNOW THEM WELL!)

<table>
<thead>
<tr>
<th>$\frac{d}{dx} (\sin x) = \cos x$</th>
<th>$\frac{d}{dx} (\tan x) = \sec^2 x$</th>
<th>$\frac{d}{dx} (\sec x) = \sec x \tan x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d}{dx} (\cos x) = -\sin x$</td>
<td>$\frac{d}{dx} (\cot x) = -\csc^2 x$</td>
<td>$\frac{d}{dx} (\csc x) = -\csc x \cot x$</td>
</tr>
</tbody>
</table>
Prove all the remaining Trig function derivatives!

1. Differentiate \(f(x) = 5x^3 \sin x \)

2. Differentiate \(g(x) = \frac{\sec x}{1 + \tan x} \)

3. For what values of \(x \) does \(f(x) = x - 2\cos x \) have a horizontal tangent?

4. A mass on a spring vibrates horizontally on a smooth level surface as shown in the figure at the left. The equation of motion for the mass is \(x(t) = 8\sin t \), where \(x \) is in centimeters and \(t \) is in seconds.
 a) Find the velocity and acceleration at time \(t \).
 b) Find the position, velocity and acceleration of the mass at \(t = 2\pi / 3 \) seconds.
 What is its direction of motion at that time?
 Is it speeding up or slowing down?

5. What is the 51st derivative of \(y = \sin x \)?