Chapter 3
Mathematics of Finance

Section 3
Future Value of an Annuity; Sinking Funds

Definition of Annuity

- An **annuity** is any sequence of equal periodic payments.
- An **ordinary annuity** is one in which payments are made at the end of each time interval. If for example, $100 is deposited into an account every quarter (3 months) at an interest rate of 8% per year, the following sequence illustrates the growth of money in the account after one year:

\[
100 + 100 \left(1 + \frac{0.08}{4}\right) + 100(1.02)(1.02) + 100(1.02)(1.02)(1.02)
\]

This amount was just put in at the end of the 4th quarter, so it has earned no interest.

General Formula for Future Value of an Annuity

\[
FV = PMT \left(\frac{(1 + i)^n - 1}{i}\right)
\]

where
- \(FV\) = future value (amount)
- \(PMT\) = periodic payment
- \(i\) = rate per period
- \(n\) = number of payments (periods)

Example

- Suppose a $1000 payment is made at the end of each quarter and the money in the account is compounded quarterly at 6.5% interest for 15 years. How much is in the account after the 15 year period?
Example

- Suppose a $1000 payment is made at the end of each quarter and the money in the account is compounded quarterly at 6.5% interest for 15 years. How much is in the account after the 15 year period?
- **Solution:**

 \[FV = PMT \left(\frac{(1+i)^n - 1}{i} \right) \]

 \[FV = 1000 \left(\frac{1 + \frac{0.065}{4}}{4} \right)^{4(15)} - 1 \]

 \[FV = 1000 \left(\frac{1 + \frac{0.065}{4}}{4} \right)^{60} - 1 \]

 \[FV = 1000 \cdot 1.065^{60} - 1 \]

 \[FV = 1000 \cdot 2.30083 - 1 \]

 \[FV = 1000 \cdot 2.30083 - 1 \]

 \[FV = 2300.83 - 1 \]

 \[FV = 2300.83 \]

Amount of Interest Earned

- How much interest was earned over the 15 year period?

Solution:

Each periodic payment was $1000. Over 15 years, 15(4) = 60 payments were made for a total of $60,000. Total amount in account after 15 years is $100,336.68. Therefore, amount of accrued interest is $100,336.68 - $60,000 = $40,336.68.
Balance in the Account at the End of Each Period

This graph displays the balance of the account at the end of each quarter.

Sinking Fund

- **Definition:** Any account that is established for accumulating funds to meet future obligations or debts is called a *sinking fund*.
- The *sinking fund payment* is defined to be the amount that must be deposited into an account periodically to have a given future amount.

Sinking Fund Payment Formula

To derive the sinking fund payment formula, we use algebraic techniques to rewrite the formula for the future value of an annuity and solve for the variable PMT:

\[
FV = PMT \left(\frac{(1+i)^n - 1}{i} \right)
\]

\[
FV \left(\frac{i}{(1+i)^n - 1} \right) = PMT
\]

Sinking Fund Sample Problem

How much must Harry save each month in order to buy a new car for $12,000 in three years if the interest rate is 6% compounded monthly?
Sinking Fund

Sample Problem Solution

How much must Harry save each month in order to buy a new car for $12,000 in three years if the interest rate is 6% compounded monthly?

Solution:

\[
FV \left(\frac{i}{(1+i)^n - 1} \right) = PMT
\]

\[
12000 \left[\frac{0.06}{12} \right] = pmt = 305.06
\]

Approximating Interest Rates

Example

Mr. Ray has deposited $150 per month into an ordinary annuity. After 14 years, the annuity is worth $85,000. What annual rate compounded monthly has this annuity earned during the 14 year period?

Solution:

Use the \(FV \) formula: Here \(FV = 85,000, PMT = $150 \) and \(n \), the number of payments is \(14(12) = 168 \).

Substitute these values into the formula. Solution is approximated graphically.

\[
FV = PMT \left(\frac{(1+i)^n - 1}{i} \right)
\]

\[
a = 85,000, \quad 150 = \frac{(1+i)^{168} - 1}{i}
\]

\[
y = \frac{(1+x)^{168} - 1}{x} = \frac{85,000}{150} = 566.67
\]

Graph each side of the last equation separately on a graphing calculator and find the point of intersection.
The monthly interest rate is about 0.01253 or 1.253%.
The annual interest rate is about 15%.