1. Find the following product and write the result in standard form, a+bi. \((-5 + 2i)(1 + i)\)

2. Divide the following complex numbers and express the result in standard form. \(\frac{4 + 4i}{5 + i}\)

3. Find the following product and write the result in standard form, a+bi. \((2 + i)^2 - (4 - i)^2\)

4. Find the vertex, x-intercepts, axis of symmetry, domain and range for the following parabola:
 \(f(x) = (x+4)^2 - 2\)

5. Complete the square in the following parabola to determine the vertex:
 \(f(x) = 2x^2 + 12x + 703\)

6. Sketch a graph of the function \(f(x) = 3(x+12)^3(x+6)^2(x)(x-4)^4\). Show the end behavior and the behavior of the function at all the x-intercepts.

7. Use long division to divide: \((4x^3 + 6x^2 + 3x - 1) \div (2x^2 + 1)\)

8. Use synthetic division to divide: \((3x^4 + 11x^3 - 20x^2 + 7x + 35) \div (x + 5)\)

 Use the function \(f(x) = 5x^4 + x^3 - 9x^2 - 4x + 4\) to answer problems 9 and 10.

9. Use the Rational Zero Theorem to list all possible rational zeros

10. Use Descartes’ Rule to determine the possible number of positive and negative real zeros.

11. Find a 3rd degree polynomial that has zeros of 2 and (2-3i). The polynomial must be equal to -10 when x is 1.

12. Find ALL zeros of the polynomial function and write it as a product of linear factors.
 \(f(x) = x^4 - 6x^3 + x^2 + 24x + 16\)

 For the rational functions given in 13 and 14, find the domain and any asymptotes that the function may have.

13. \(r(x) = \frac{2x - 4}{x + 3}\)

14. \(t(x) = \frac{4x^2 - 16x + 16}{2x - 3}\)

 For 15 and 16, solve the given inequalities. Put answer in interval notation.

15. \(x^3 + 2x^2 > 3x\)

16. \(\frac{x + 3}{x - 4} \leq 5\)