APPLICATIONS OF INTEGRATION

6.2 Volumes

Objective: Find volume of solids of revolution

I. Definition of volume

A. S is a solid which lies between \(x = a \) and \(x = b \)
B. Cross-sectional area of S in plane \(P_x \), through \(x \) and perpendicular to \(x \)-axis is \(A(x) \)
C. A is a continuous function
D. \(V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_{a}^{b} A(x) \, dx \)

II. A solid of revolution is formed by revolving a region in a plane about a line in the plane, called the axis of revolution.

III. Disk method: Find the volume of the solid of revolution generated by revolving the region formed by \(y = \frac{1}{2}x^3 - 2x^2 + x + 4 \), \(x = 0 \), \(x = 3 \), and the \(x \)-axis about the \(x \)-axis.

A. Consider a regular partition on \([0, 3]\) with \(\Delta x = \frac{1}{4} \)
B. Rotate area about \(x \)-axis
C. Each rectangle generates a circular disk
D. Volume of a disk = \(\pi r^2 h \)
E. Radius of a disk = \(f(x) \)
F. Height (thickness) of a disk = \(\Delta x \)
G. Volume of a disk = \(\pi (\text{radius})^2 (\text{thickness}) \)
H. Volume of a disk = \(\pi \left(\frac{1}{2}x^3 - 2x^2 + x + 4 \right)^2 \Delta x \)

I. \(V_L = \pi \left[f(0)^2 + f\left(\frac{1}{4}\right)^2 + f\left(\frac{2}{4}\right)^2 + f\left(\frac{3}{4}\right)^2 + f\left(\frac{4}{4}\right)^2 + f\left(\frac{5}{4}\right)^2 + f\left(\frac{6}{4}\right)^2 \right. \\
\left. + f\left(\frac{7}{4}\right)^2 + f\left(\frac{8}{4}\right)^2 + f\left(\frac{9}{4}\right)^2 + f\left(\frac{10}{4}\right)^2 + f\left(\frac{11}{4}\right)^2 \right] \left(\frac{1}{4}\right) \)

\(V_L \approx 28.35\pi, \quad V_R \approx 25.91\pi, \quad V_M \approx 27.10\pi \)
\[J. \quad V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_{a}^{b} A(x) \, dx = \int_{a}^{b} \pi [f(x)]^2 \, dx = \int_{0}^{3} \pi \left(\frac{1}{2} x^3 - 2x^2 + x + 4 \right)^2 \, dx \]
\[
= \int_{0}^{3} \pi \left(\frac{x^6}{4} - 2x^5 + 5x^4 - 15x^2 + 8x + 16 \right) \, dx \\
= \pi \left[\frac{x^7}{28} - \frac{x^6}{3} + x^5 - 5x^3 + 4x^2 + 16x \right]_{0}^{3} = \frac{759}{28} \pi
\]

IV. Find the volume of the solid of revolution formed by rotating the region bounded by \(y = x \), \(y = 3 \), and \(x = 0 \) about the \(y \)-axis.

A. Thickness = \(\Delta y \)
B. Radius = \(f(y) = y \)
C. Volume of a disk = \(\pi y^2 \Delta y \)
D. \(V = \int_{0}^{3} \pi y^2 \, dy = \pi \left[\frac{y^3}{3} \right]_{0}^{3} = 9\pi \)

V. Washer method: Find volume of solid obtained by rotating the region enclosed by the curves \(y = x \) and \(y = x^2 \) about the line \(y = 2 \)

A. Thickness = \(\Delta x \)
B. Cross-section is an annulus [ring or washer]
C. Outer radius = \(2 - x^2 \); inner radius = \(2 - x \)
D. Volume of a washer = \([\pi (2 - x^2)^2 - \pi (2 - x)^2] \Delta x \)
E. \(V = \int_{0}^{1} \pi [(2 - x^2)^2 - (2 - x)^2] \, dx = \pi \int_{0}^{1} (x^4 - 5x^2 + 4x) \, dx = \frac{8\pi}{15} \)

VI. Summation of cross-sections may also be used to find volumes of solids which are not revolved about an axis: see Example 6 on p. 460