Section 5.2 - Diagonalization

If A and B are both $n \times n$ matrices such that there exists an $n \times n$ invertible matrix P such that

$$B = P^{-1}AP$$

we say B is similar to A.

If B is similar to A, then A is similar to B.

Proof: Since B is similar to A

$$B = P^{-1}AP$$

$$PB = P(P^{-1}AP) = (PP^{-1})AP = I(AP) = AP$$

$$PBP^{-1} = (AP)P^{-1} = A(PP^{-1}) = AI = A$$

Now let $Q = P^{-1}$, then we have $Q^{-1} = (P^{-1})^{-1} = P$ and

$$A = Q^{-1}BQ$$

so that A is similar to B.

Similar matrices share many properties. For instance, they have the same determinant:
A square matrix A is said to be diagonalizable if it is similar to a diagonal matrix D (i.e. there is an invertible matrix P such that $P^{-1}AP = D$)

Theorem: If A is $n \times n$, then the following are equivalent:

(a) A is diagonalizable

(b) A has n linearly independent eigenvectors.

Theorem: If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct eigenvalues of matrix A, and if $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ are corresponding eigenvectors, then $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ is a linearly independent set.

Theorem: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Procedure for diagonalizing an $n \times n$ matrix: See page 305 of textbook.
Diagonalize the matrix $A = \begin{bmatrix} 1 & -8 \\ -4 & -3 \end{bmatrix}$